A scoping review of research on factors affecting the oviposition, development and survival of Aedes mosquitoes
Abstract
Objective: This is a conceptual paper to identify the effects of artificial light on the oviposition preferences, development of the juveniles and survivals of the adult Aedes aegypti.
Method: The studies selected were analyzed by using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and discussed throughout the paper in the context of implications towards the oviposition, development and survivals of this species which include identifying the effect of different type of artificial lights and sunlight with different photoperiod regimes and water depth.
Result: Most of the studies on the variables were focused on effect of temperature on the development and survival which 52% and 28% respectively. While, for the oviposition most of studies were focus on the impact of chemical deterrent and attractant on the egg-laying activity with 36%.
Conclusion: To conclude, there is a gap found as there are none studies artificial light exposure effects towards this species especially in terms of its oviposition preferences, juvenile development and survivals of this species.
Keywords: artificial light, dengue vector, development, oviposition, survival
Full Text:
PDFReferences
Allan, S. A., & Kline, D. L. (1998). Larval rearing water and preexisting eggs influence oviposition by Aedes aegypti and Ae. albopictus (Diptera: Culicidae). Journal of medical entomology, 35(6), 943-947.
Allan, S. A., & Kline, D. L. (1995). Evaluation of organic infusions and synthetic compounds mediating oviposition in Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Journal of Chemical Ecology, 21(11), 1847–1860.
Autran, E. S., Neves, I. A., da Silva, C. S. B., Santos, G. K. N., Câmara, C. A. G. d., & Navarro, D. M. A. F. (2009). Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). Bioresource Technology, 100(7), 2284–2288.
Araújo, M. D. S., Gil, L. H. S., & E-Silva, A. D. A. (2012). Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions. Malaria Journal, 11, 1–9.
Bayoh, M. N., & Lindsay, S. W. (2003). Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bulletin of Entomological Research, 93(05), 375–381.
Binckley, C. A. (2017). Forest canopy, water level, and biopesticide interact to determine oviposition habitat selection in Aedes albopictus. Journal of Vector Ecology, 42(2).
Bernáth, B., Horváth, G., & Meyer-Rochow, V. B. (2012). Polar-otaxis in egg-laying yellow fever mosquitoes Aedes (Stegomyia) aegypti is masked due to infochemicals. Journal of Insect Physiology, 58(7), 1000–1006.
Bertram, D. S., Varma, M. G., Page, R. C., & Heathcote, O. H. (1970). A betalight trap for mosquito larvae. Journal of Medical Entomology, 7(2), 267–270.
Briegel, H., & Timmermann, S. E. (2001). Aedes albopictus (Diptera: Culicidae): physiological aspects of development and reproduction. Journal of medical entomology, 38(4), 566-571.
Burkett, D. A., & Butler, J. F. (2005). Laboratory evaluation of colored light as an attractant for female Aedes aegypti, Aedes albopictus, Anopheles quadrimaculatus, and Culex nigripalpus. Florida Entomologist, 88(4), 383–389.
Canyon, D. V., Hii, J. L. K., & Muller, R. (1999). Effect of diet on biting, oviposition, and survival of Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 36(3), 301–308.
Canyon, D. V., Hii, J. L. K., & Muller, R. (1998). Multiple host-feeding and biting persistence of Aedes aegypti. Annals of Tropical Medicine & Parasitology, 92(3), 311-316.
Carrington, L. B., Seifert, S. N., Willits, N. H., Lambrechts, L., & Scott, T. W. (2013). Large Diurnal Temperature Fluctuations Negatively Influence Aedes aegypti ( Diptera : Culicidae ) Life-History Traits, (2011), 43–51.
Chadee, D. D., Corbet, P. S., & Greenwood, J. J. D. (1990). Egg‐laying Yellow Fever Mosquitoes avoid sites containing eggs laid by themselves or by conspecifics. Entomologia Experimentalis et Applicata, 57(3), 295-298.
Chahad-Ehlers, S., Lozovei, A. L., & Marques, M. D. (2007). Reproductive and post-embryonic daily rhythm patterns of the malaria vector Anopheles (Kerteszia) cruzii: Aspects of the life cycle. Chronobiology International, 24(2), 289–304.
Chatterjee, S., Chakraborty, A., & Sinha, S. K. (2015). Spatial distribution & physicochemical characterization of the breeding habitats of Aedes aegypti in & around Kolkata, West Bengal, India. Indian Journal of Medical Research, 142 (December), 79–86.
Cheong, Y. L., Leitao, P. J., & Lakes, T. (2014). Assessment of land use factors associated with dengue cases in Malaysia using boosted regression trees. Spatial and Spatio-Temporal Epidemiology, 10, 75–84
Costanzo, K. S., Dahan, R. A., & Radwan, D. (2016). Effects of photoperiod on population performance and sexually dimorphic responses in two major arbovirus mosquito vectors, Aedes albopictus and Aedes aegypti (Diptera: Culicidae). International Journal of Tropical Insect Science, 36(4), 177–187.
Costanzo, K. S., Schelble, S., Jerz, K., & Keenan, M. (2015). The effect of photoperiod on life history and blood-feeding activity in Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Journal of Vector Ecology : Journal of the Society for Vector Ecology, 40(1), 164–171.
Couret, J., Dotson, E., & Benedict, M. Q. (2014). Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE, 9(2).
De Majo, M. S., Montini, P., & Fischer, S. (2017). Egg hatching and survival of immature stages of Aedes aegypti (Diptera: Culicidae) under natural temperature conditions during the cold season in Buenos Aires, Argentina. Journal of Medical Entomology, 54(1), 106–113.
Delatte, H., Gimonneau, G., Triboire, A., & Fontenille, D. (2009). Influence of Temperature on Immature Development, Survival, Longevity, Fecundity, and Gonotrophic Cycles of Aedes albopictus , Vector of Chikungunya and Dengue in the Indian Ocean. Journal of Medical Entomology, 46(1), 33–41.
Dieng, H., Rahman, G. M. S., Hassan, A. A., Salmah, M. R. C., Satho, T., Miake, F. & Sazaly, A. B. (2012). The effects of simulated rainfall on immature population dynamics of Aedes albopictus and female oviposition. International Journal of Biometeorology, 56(1), 113–120.
Dutra, H. L. C., Rodrigues, S. L., Mansur, S. B., De Oliveira, S. P., Caragata, E. P., & Moreira, L. A. (2017). Development and physiological effects of an artificial diet for Wolbachia-infected Aedes aegypti. Scientific Reports, 7(1), 1–11.
Ebi, K. L., & Nealon, J. (2016). Dengue in a changing climate. Environmental Research, 151, 115–123.
Farjana, T., Tuno, N., & Higa, Y. (2012). Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus. Medical and Veterinary Entomology, 26(2), 210–217.
Feng, Y. T., Wu, Q. J., Xu, B. Y., Wang, S. L., Chang, X. L., Xie, W., & Zhang, Y. J. (2009). Fitness costs and morphological change of laboratory‐selected thiamethoxam resistance in the B‐type Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of Applied Entomology, 133(6), 466-472.
Ganesan, K., Mendki, M. J., Suryanarayana, M. V., Prakash, S., & Malhotra, R. C. (2006). Studies of Aedes aegypti (Diptera: Culicidae) ovipositional responses to newly identified semi-ochemicals from conspecific eggs. Australian Journal of entomology, 45(1), 75-80.
Getachew, D., Tekie, H., Gebre-Michael, T., Balkew, M., & Mesfin, A. (2015). Breeding sites of aedes aegypti: Potential dengue vectors in dire Dawa, east Ethiopia. Interdisciplinary Per-spectives on Infectious Diseases. 2015
Gomes, A. D. C., Lea, S., Gotlieb, D., Marques, C. D. A., Paula, M. B. De, & M, G. R. A. (1994). Duration of larval and pupal development stages of Aedes albopictus in natural and artificial containers. Revista de saude publica, 29(1), 15-19.
Grech, M. G., Sartor, P. D., Almirón, W. R., & Ludueña-Almeida, F. F. (2015). Effect of temperature on life history traits during immature development of Aedes aegypti and Culex quin-quefasciatus (Diptera: Culicidae) from Córdoba city, Argentina. Acta Tropica, 146, 1–6.
Harwood, R. F., & Halfhill, E. (1964). The effect of photoperiod on fat body and ovarian development of Culex tarsalis (Diptera: Culicidae). Annals of Entomological Society of America, 57, 596–600.
Hiwat, H., Doerdjan, K., Kerpens, M., Samjhawan, A., & Soekhoe, T. (2013). Importance of domestic water containers as Aedes aegypti breeding sites in Suriname; implications for dengue control. Academic Journal of Suriname, 4(4), 403–407
Howland, L. J. (2017). Bionomical Investigation of English Mos-quito Larvae with Special Reference to Their Algal Food. British Ecological Society Stable, 18(1), 81–125.
Imam, H., Sofi, G., Zarnigar, & Aziz, S. (2014). The basic rules and methods of mosquito rearing (Aedes aegypti). Tropical Parasitology, 4(1), 53.
Jong, Z. W., Kassim, N. F. A., Naziri, M. A., & Webb, C. E. (2017). The effect of inbreeding and larval feeding regime on immature development of Aedes albopictus. Journal of Vector Ecology, 42(1), 105–112.
Joshi, D. S. (1996). Effect of fluctuating and constant temperatures on development, adult longevityand fecundity in the mosquito Aedes krombeini. Journal of Thermal Biology, 21(3), 151–154.
Juliano, S. A. (1998). Species introduction and replacement among mosquitoes: interspecific resource competition or apparent competition?. Ecology, 79(1), 255-268.
Kappus, K. D., & Venard, C. E. (1967). The effects of photoperiod and temperature on the induction of diapause in Aedes trise-riatus (Say). Journal of Insect Physiology, 13(7), 1007–1019.
Kumar, S., Singh, A. P., Nair, G., Batra, S., Seth, A., Wahab, N., & Warikoo, R. (2011). Impact of Parthenium hysterophorus leaf extracts on the fecundity, fertility and behavioural response of Aedes aegypti L. Parasitology research, 108(4), 853-859.
Lee, H. L., & Joko, H. (2009). Comparative life parameters of transgenic and wild strain of Aedes aegypti in the laboratory.
Leisnham, P. T., Towler, L., & Juliano, S. A. (2011). Geographic Variation of Photoperiodic Diapause but Not Adult Survival or Reproduction of the Invasive Mosquito Aedes albopictus (Diptera: Culicidae) in North America. Annals of the Ento-mological Society of America, 104(6), 1309–1318.
Lester, P. J., & Pike, A. J. (2003). Container surface area and water depth influence the population dynamics of the mosquito Culex pervigilans (Diptera: Culicidae) and its associated predators in New Zealand. Journal of Vector Ecology: Journal of the Society for Vector Ecology, 28(2), 267–274.
Liu-Helmersson, J., Quam, M., Wilder-Smith, A., Stenlund, H., Ebi, K., Massad, E., & Rocklöv, J. (2016). Climate Change and Aedes Vectors: 21st Century Projections for Dengue Trans-mission in Europe. EBioMedicine, 7, 267–277.
Maciel-de-Freitas, R., Koella, J. C., & Lourenço-de-Oliveira, R. (2011). Lower survival rate, longevity and fecundity of Aedes aegypti (Diptera: Culicidae) females orally challenged with dengue virus serotype 2. Transactions of the Royal Society of Tropical Medicine and Hygiene, 105(8), 452–458
Mala, A. O., Irungu, L. W., Mitaki, E. K., Shililu, J. I., Mbogo, C. M., Njagi, J. K., & Githure, J. I. (2014). Gonotrophic cycle duration, fecundity and parity of Anopheles gambiae complex mosquitoes during an extended period of dry weather in a semi arid area in Baringo County, Kenya. Int J Mosq Res, 1(2), 28-34.
Mohammed, A., & Chadee, D. D. (2011). Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Tropica, 119(1), 38–43.
Muir, L. E., Thorne, M. J., & Kay, B. H. (1992). Aedes aegypti (Diptera: Culicidae) vision: spectral sensitivity and other perceptual parameters of the female eye. Journal of Medical Entomology, 29(2), 278–281.
Munga, S., Minakawa, N., Zhou, G., Mushinzimana, E., Barrack, O. O. J., Githeko, A. K., & Yan, G. (2006). Association between land cover and habitat productivity of malaria vectors in western Kenyan highlands. The American journal of tropical medicine and hygiene, 74(1), 69-75.
Murdock, C., Evans, M. V., McClanahan, T., Miazgowicz, K., & Tesla, B. (2016). Fine-scale variation in microclimate across an urban landscape changes the capacity of Aedes albopictus to vector arbovirus. bioRxiv, 090613.
Murrell, E. G., & Juliano, S. A. (2014). Detritus type alters the outcome of interspecific competition between Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 45(3), 375-383.
Muturi, E. J., Lampman, R., Costanzo, K., & Alto, B. W. (2011). Effect of temperature and insecticide stress on life-history traits of Culex restuans and Aedes albopictus (Diptera: Culicidae). Journal of medical entomology, 48(2), 243-250.
Nazri, C. D., Madzlan, M. F., Nur, S., Hasnan, A., & Misran, N. (2016). Water quality characteristics of dengue vectors breeding containers. International Journal of Mosquito Research, 3(1), 25–29.
Neto, P. L., & Navarro-Silva, M. a. (2004). Systematics, morphology and physiology Development , Longevity, Gonotrophic Cycle and Oviposition of Aedes albopictus Skuse (Diptera: Culicidae) under Cyclic Temperatures. Neotropical Entomology, 33(February), 29–33.
Obsomer, V., Defourny, P., & Coosemans, M. (2007). The Anopheles dirus complex: Spatial distribution and environmental drivers. Malaria Journal, 6, 1–16.
O’Gower, A. (1963). Environmental stimuli and the oviposition behaviour of var. Theobald (Diptera, Culicidae). Animal Behaviour, 11(1), 189–197.
Overgaard, H. J., Olano, V. A., Jaramillo, J. F., Matiz, M. I., Sar-miento, D., Stenström, T. A., & Alexander, N. (2017). A cross-sectional survey of Aedes aegypti immature abundance in urban and rural household containers in central Colombia. Parasites and Vectors, 10(1), 1–12.
Phanitchat, T., Apiwathnasorn, C., Sumroiphon, S., Samung, Y., Naksathit, A., Thawornkuno, C., … Sungvornyothin, S. (2017). The influence of temperature on the developmental rate and survival of Aedes albopictus in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 48(4), 799–808.
Pinheiro, S., & Tadei, W. P. (2002). Frequency, diversity, and productivity study on the Aedes aegypti most preferred con-tainers in the city of Manaus, Amazonas, Brazil, Revista do Instituto de Medicina Tropical de São Paulo, 44(5), 245-250.
Rahim, J., Ahmad, A. H., & Maimusa, A. H. (2017). Effects of temephos resistance on life history traits of Aedes albopictus (Skuse)(Diptera: Culicidae), a vector of arboviruses. Revista Brasileira de Entomologia, 61(4), 312-317.
Rajaganesh, R., Murugan, K., Panneerselvam, C., Jayashanthini, S., Aziz, A. T., Roni, M., … Benelli, G. (2016). Fern-synthesized silver nanocrystals: Towards a new class of mosquito ovipo-sition deterrents? Research in Veterinary Science, 109, 40–51.
Rao, B. B., Harikumar, P. S., Jayakrishnan, T., & George, B. (2011). Characteristics of Aedes (Stegomyia) albopictus Skuse (Diptera:Culicidae) breeding sites. The Southeast Asian Journal of Tropical Medicine and Public Health, 42(5), 1077–1082.
Reegan, A. D., Gandhi, M. R., Paulraj, M. G., & Ignacimuthu, S. (2015). Ovicidal and Oviposition Deterrent Activities of Medicinal Plant Extracts Against Aedes aegypti L. and Culex quinquefasciatus Say Mosquitoes (Diptera: Culicidae). Osong Public Health and Research Perspectives, 6(1), 64–69.
Reiskind, M. H., & Zarrabi, A. A. (2012). Water Surface Area and Depth Determine Oviposition Choice in Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 49(1), 71–76.
Rejmánková, E., Grieco, J., Achee, N., & Roberts, D. R. (2013). Ecology of Larval Habitats. Anopheles Mosquitoes - New Insights into Malaria Vectors. InTech
Roiz, D., Rosà, R., Arnoldi, D., & Rizzoli, A. (2010). Effects of Temperature and Rainfall on the Activity and Dynamics of Host-Seeking Aedes albopictus Females in Northern Italy. Vector-Borne and Zoonotic Diseases, 10(8), 811–816.
Rozilawati, H., Masri, S. M., Tanaselvi, K., Zairi, J., Nazni, W., & Lee, H. (2012). Effect of Temperature on the Immature Development of Aedes Albopictus Skuse, 85.
Santos, L. M., Nascimento, J. S., Santos, M. A., Marriel, N. B., Bezerra-Silva, P. C., Rocha, S. K., ... & Navarro, D. M. (2017). Fatty acid-rich volatile oil from Syagrus coronata seeds has larvicidal and oviposition-deterrent activities against Aedes aegypti. Physiological and molecular plant pathology, 100, 35-40.
Santos, S. R. A., Melo-Santos, M. A. V., Regis, L., & Albuquerque, C. M. R. (2003). Field evaluation of ovitraps consociated with grass infusion and Bacillus thuringiensis var. israelensis to determine oviposition rates of Aedes aegypti.
Sarwar, M. (2015). Role of secondary dengue vector mosquito Aedes albopictus skuse (Diptera: Culicidae) for dengue virus transmission and its coping. International Journal for Animal Biology, 1(5), 219–224
Schmidt, W., Suzuki, M., Thiem, V. D., White, R. G., Tsuzuki, A., Yanai, H., & Ariyoshi, K. (2011). Population Density, Water Supply, and the Risk of Dengue Fever in Vietnam: Cohort Study and Spatial Analysis. PLoS medicine, 8(8).
Seenivasagan, T., Sharma, K. R., Sekhar, K., Ganesan, K., Prakash, S., & Vijayaraghavan, R. (2009). Electroantennogram, flight orientation, and oviposition responses of Aedes aegypti to the oviposition pheromone n-heneicosane. Parasitology Research, 104(4), 827–833.
Snow, W. F. (1971). The spectral sensitivity of Aedes aegypti (L.) at oviposition. Bull Entomol Res, 60(4), 683–696.
Stresman, G. H. (2010). Beyond temperature and precipitation: Ecological risk factors that modify malaria transmission. Acta Tropica, 116(3), 167–172.
Swain, V., Mohanty, S. S., & Raghavendra, K. (2008). Sunlight exposure enhances larval mortality rate in Culex quinquefasciatus Say. Journal of Vector Borne Diseases, 45(1), 70–72.
Talyuli, O. A., Bottino-Rojas, V., Taracena, M. L., Soares, A. L. M., Oliveira, J. H. M., & Oliveira, P. L. (2015). The use of a chemically defined artificial diet as a tool to study Aedes aegypti physiology. Journal of insect physiology, 83, 1-7.
Teng, H.-J., & Apperson, C. S. (2000). Development and Survival of Immature Aedes albopictus and Aedes triseriatus (Diptera: Culicidae) in the Laboratory: Effects of Density, Food, and Competition on Response to Temperature. Journal of Medical Entomology, 37(1), 40–52.
Thomas, S. M., Obermayr, U., Fischer, D., Kreyling, J., & Beierkuhnlein, C. (2012). Low-temperature threshold for egg survival of a post-diapause and non-diapause European aedine strain, Aedes albopictus (Diptera: Culicidae). Parasites & Vectors, 100.
Tran, A., L’Ambert, G., Lacour, G., Benoît, R., Demarchi, M., Cros, M., … Ezanno, P. (2013). A rainfall- and temperature-driven abundance model for Aedes albopictus populations. Interna-tional Journal of Environmental Research and Public Health, 10(5), 1698–1719.
Trimble, R. M., Smith, M., Theobald, T., & Toxor-hyn-, S. C. (1979). induction , development time , and predation in the tree-hole mosquito , Toxorhynchites.
Vontas, J., Kioulos, E., Pavlidi, N., Morou, E., Della Torre, A., & Ranson, H. (2012). Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pesticide Biochemistry and Physiology, 104(2), 126-131.
Wang, L. Y., & Jaal, Z. (2005). Sublethal Effects of Bacillus thu-ringiensis H-14 on the Survival Rate, Longevity, Fecundity and F1 Generation Developnment Period of Aedes aegypti.
Washburn, J. O. (1995). Regulatory factors affecting larval mosquito populations in container and pool habitats: implications for biological control. Journal of the American Mosquito Control Association, 11(2 Pt 2), 279–283.
Wong, J., Stoddard, S. T., Astete, H., Morrison, A. C., & Scott, T. W. (2011). Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLoS Neglected Tropical Diseases, 5(4).
Yee, D. A., Juliano, S. A., & Vamosi, S. M. (2012). Seasonal Photoperiods Alter Developmental Time and Mass of an In-vasive Mosquito, Aedes albopictus (Diptera: Culicidae), Across Its North-South Range in the United States. Journal of Medical Entomology, 49(4), 825–832.
Yoshioka, M., Couret, J., Kim, F., McMillan, J., Burkot, T. R., Dotson, E. M., … Vazquez-Prokopec, G. M. (2012). Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae). Parasites and Vectors, 5(1), 1–11
Zapletal, J., Erraguntla, M., Adelman, Z. N., Myles, K. M., & Lawley, M. A. (2018). Impacts of diurnal temperature and larval density on aquatic development of Aedes aegypti. PLoS ONE, 13(3), 1–16.
Zahiri, N., & Rau, M. E. (1998). Oviposition Attraction and Repellency of Aedes aegypti (Diptera: Culicidae) to Waters from Conspecific Larvae Subjected to Crowding, Confinement, Starvation, or Infection. Journal of Medical Entomology, 35(5), 782–787.
Zeller, M., & Koella, J. C. (2016). Effects of food variability on growth and reproduction of Aedes aegypti. Ecology and Evolution, 6(2), 552–559.
Refbacks
- There are currently no refbacks.